Yeast is the key for genetic answers

2014-11-28 18:01:09

One of the great comeuppances for the human race was the realization that our DNA doesn’t differ very much from the DNA of other animals. Or plants. Even yeast.


The blow comparative genomics dealt to anthropocentrism and human vanity was a boon for medical science. Oliver Kerscher, a biologist at William & Mary, exploits the similarities between our DNA and the DNA of yeast to identify and study genes involved in genome maintenance and chromosome segregation.

“If I can understand the role of a certain gene in yeast,” Kerscher explains, “there’s a good chance that I can tell you the function of that gene in humans.”

Kerscher’s lab focuses on DNA damage brought out by hitches in the chromosome cycle, the process by which cells make copies of themselves. Botched genome maintenance during cell division is the root cause of a number of human medical maladies ranging from Down’s syndrome to spontaneous abortions to cancer. 

By studying the chromosome cycle of yeast — the very same stuff you use to bake bread — Kerscher’s lab has been able to make important contributions to the understanding of genetic problems in humans. 
What inspired you to choose this field of study?

There are many fascinating fields of biology, but when I began doing research in the early 90s molecular biology was just starting its heyday and biology turned from a descriptive science to one of deep molecular understanding. I was fascinated by the possibility to answer some of the ultimate questions about cell biology at very high resolution and so I sought out opportunities to get involved.

What is the best piece of advice you ever received?

Someone once told me: “Always do what you like and success will follow.” Life science research is very hard and I cannot fathom how someone would study something they are actually not enthralled with. I see this a lot with students who have the tendency to join a program because of a hip lab or a hot story in science. This is why, in my mind, it is so important that students try out a few lab experiences and internships before they commit. I find that once a student has found what they like it’s impossible to keep them out of the lab and that’s when their research really takes off.

What was your first scientific experiment as a child?

It sounds like a cliché, but I was one of those kids who always had worms and bugs in his pockets. When I was 6, I wanted to become a forest ranger and by 12 I had decided that my Ph.D. thesis was going to be on dragonfly maneuverability in flight. My first meaningful lab experience was during college when I interned for a summer in a molecular biology lab at Rockefeller University in New York. After that there was no turning back.